Copied to
clipboard

G = C42.126D10order 320 = 26·5

126th non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.126D10, C10.102- 1+4, C10.1092+ 1+4, (C4×Q8)⋊7D5, Q89(C4×D5), (Q8×C20)⋊9C2, (C4×D20)⋊37C2, D2025(C2×C4), Q82D55C4, (Q8×Dic5)⋊9C2, C4⋊C4.325D10, D208C417C2, C42⋊D516C2, C20.72(C22×C4), C10.48(C23×C4), (C2×Q8).202D10, C2.4(D48D10), (C2×C20).497C23, (C4×C20).170C22, (C2×C10).118C24, D10.20(C22×C4), C22.37(C23×D5), (C2×D20).270C22, C4⋊Dic5.368C22, (Q8×C10).218C22, (C4×Dic5).93C22, Dic5.41(C22×C4), C2.3(Q8.10D10), C55(C23.33C23), (C2×Dic5).224C23, (C22×D5).187C23, D10⋊C4.163C22, C10.D4.138C22, C4.37(C2×C4×D5), (D5×C4⋊C4)⋊17C2, (C4×D5)⋊5(C2×C4), (C5×Q8)⋊21(C2×C4), C2.29(D5×C22×C4), (C2×C4×D5).79C22, (C2×Q82D5).6C2, (C5×C4⋊C4).346C22, (C2×C4).654(C22×D5), SmallGroup(320,1246)

Series: Derived Chief Lower central Upper central

C1C10 — C42.126D10
C1C5C10C2×C10C22×D5C2×C4×D5D5×C4⋊C4 — C42.126D10
C5C10 — C42.126D10
C1C22C4×Q8

Generators and relations for C42.126D10
 G = < a,b,c,d | a4=b4=1, c10=d2=a2b2, ab=ba, cac-1=dad-1=a-1, bc=cb, dbd-1=a2b, dcd-1=c9 >

Subgroups: 958 in 294 conjugacy classes, 151 normal (22 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C4○D4, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C2×C4⋊C4, C42⋊C2, C4×D4, C4×Q8, C4×Q8, C2×C4○D4, C4×D5, C4×D5, D20, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C5×Q8, C22×D5, C23.33C23, C4×Dic5, C10.D4, C10.D4, C4⋊Dic5, D10⋊C4, C4×C20, C5×C4⋊C4, C2×C4×D5, C2×D20, Q82D5, Q8×C10, C42⋊D5, C4×D20, D5×C4⋊C4, D208C4, Q8×Dic5, Q8×C20, C2×Q82D5, C42.126D10
Quotients: C1, C2, C4, C22, C2×C4, C23, D5, C22×C4, C24, D10, C23×C4, 2+ 1+4, 2- 1+4, C4×D5, C22×D5, C23.33C23, C2×C4×D5, C23×D5, D5×C22×C4, Q8.10D10, D48D10, C42.126D10

Smallest permutation representation of C42.126D10
On 160 points
Generators in S160
(1 42 28 131)(2 132 29 43)(3 44 30 133)(4 134 31 45)(5 46 32 135)(6 136 33 47)(7 48 34 137)(8 138 35 49)(9 50 36 139)(10 140 37 51)(11 52 38 121)(12 122 39 53)(13 54 40 123)(14 124 21 55)(15 56 22 125)(16 126 23 57)(17 58 24 127)(18 128 25 59)(19 60 26 129)(20 130 27 41)(61 107 89 147)(62 148 90 108)(63 109 91 149)(64 150 92 110)(65 111 93 151)(66 152 94 112)(67 113 95 153)(68 154 96 114)(69 115 97 155)(70 156 98 116)(71 117 99 157)(72 158 100 118)(73 119 81 159)(74 160 82 120)(75 101 83 141)(76 142 84 102)(77 103 85 143)(78 144 86 104)(79 105 87 145)(80 146 88 106)
(1 64 38 82)(2 65 39 83)(3 66 40 84)(4 67 21 85)(5 68 22 86)(6 69 23 87)(7 70 24 88)(8 71 25 89)(9 72 26 90)(10 73 27 91)(11 74 28 92)(12 75 29 93)(13 76 30 94)(14 77 31 95)(15 78 32 96)(16 79 33 97)(17 80 34 98)(18 61 35 99)(19 62 36 100)(20 63 37 81)(41 149 140 119)(42 150 121 120)(43 151 122 101)(44 152 123 102)(45 153 124 103)(46 154 125 104)(47 155 126 105)(48 156 127 106)(49 157 128 107)(50 158 129 108)(51 159 130 109)(52 160 131 110)(53 141 132 111)(54 142 133 112)(55 143 134 113)(56 144 135 114)(57 145 136 115)(58 146 137 116)(59 147 138 117)(60 148 139 118)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 86 11 96)(2 95 12 85)(3 84 13 94)(4 93 14 83)(5 82 15 92)(6 91 16 81)(7 100 17 90)(8 89 18 99)(9 98 19 88)(10 87 20 97)(21 75 31 65)(22 64 32 74)(23 73 33 63)(24 62 34 72)(25 71 35 61)(26 80 36 70)(27 69 37 79)(28 78 38 68)(29 67 39 77)(30 76 40 66)(41 155 51 145)(42 144 52 154)(43 153 53 143)(44 142 54 152)(45 151 55 141)(46 160 56 150)(47 149 57 159)(48 158 58 148)(49 147 59 157)(50 156 60 146)(101 134 111 124)(102 123 112 133)(103 132 113 122)(104 121 114 131)(105 130 115 140)(106 139 116 129)(107 128 117 138)(108 137 118 127)(109 126 119 136)(110 135 120 125)

G:=sub<Sym(160)| (1,42,28,131)(2,132,29,43)(3,44,30,133)(4,134,31,45)(5,46,32,135)(6,136,33,47)(7,48,34,137)(8,138,35,49)(9,50,36,139)(10,140,37,51)(11,52,38,121)(12,122,39,53)(13,54,40,123)(14,124,21,55)(15,56,22,125)(16,126,23,57)(17,58,24,127)(18,128,25,59)(19,60,26,129)(20,130,27,41)(61,107,89,147)(62,148,90,108)(63,109,91,149)(64,150,92,110)(65,111,93,151)(66,152,94,112)(67,113,95,153)(68,154,96,114)(69,115,97,155)(70,156,98,116)(71,117,99,157)(72,158,100,118)(73,119,81,159)(74,160,82,120)(75,101,83,141)(76,142,84,102)(77,103,85,143)(78,144,86,104)(79,105,87,145)(80,146,88,106), (1,64,38,82)(2,65,39,83)(3,66,40,84)(4,67,21,85)(5,68,22,86)(6,69,23,87)(7,70,24,88)(8,71,25,89)(9,72,26,90)(10,73,27,91)(11,74,28,92)(12,75,29,93)(13,76,30,94)(14,77,31,95)(15,78,32,96)(16,79,33,97)(17,80,34,98)(18,61,35,99)(19,62,36,100)(20,63,37,81)(41,149,140,119)(42,150,121,120)(43,151,122,101)(44,152,123,102)(45,153,124,103)(46,154,125,104)(47,155,126,105)(48,156,127,106)(49,157,128,107)(50,158,129,108)(51,159,130,109)(52,160,131,110)(53,141,132,111)(54,142,133,112)(55,143,134,113)(56,144,135,114)(57,145,136,115)(58,146,137,116)(59,147,138,117)(60,148,139,118), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,86,11,96)(2,95,12,85)(3,84,13,94)(4,93,14,83)(5,82,15,92)(6,91,16,81)(7,100,17,90)(8,89,18,99)(9,98,19,88)(10,87,20,97)(21,75,31,65)(22,64,32,74)(23,73,33,63)(24,62,34,72)(25,71,35,61)(26,80,36,70)(27,69,37,79)(28,78,38,68)(29,67,39,77)(30,76,40,66)(41,155,51,145)(42,144,52,154)(43,153,53,143)(44,142,54,152)(45,151,55,141)(46,160,56,150)(47,149,57,159)(48,158,58,148)(49,147,59,157)(50,156,60,146)(101,134,111,124)(102,123,112,133)(103,132,113,122)(104,121,114,131)(105,130,115,140)(106,139,116,129)(107,128,117,138)(108,137,118,127)(109,126,119,136)(110,135,120,125)>;

G:=Group( (1,42,28,131)(2,132,29,43)(3,44,30,133)(4,134,31,45)(5,46,32,135)(6,136,33,47)(7,48,34,137)(8,138,35,49)(9,50,36,139)(10,140,37,51)(11,52,38,121)(12,122,39,53)(13,54,40,123)(14,124,21,55)(15,56,22,125)(16,126,23,57)(17,58,24,127)(18,128,25,59)(19,60,26,129)(20,130,27,41)(61,107,89,147)(62,148,90,108)(63,109,91,149)(64,150,92,110)(65,111,93,151)(66,152,94,112)(67,113,95,153)(68,154,96,114)(69,115,97,155)(70,156,98,116)(71,117,99,157)(72,158,100,118)(73,119,81,159)(74,160,82,120)(75,101,83,141)(76,142,84,102)(77,103,85,143)(78,144,86,104)(79,105,87,145)(80,146,88,106), (1,64,38,82)(2,65,39,83)(3,66,40,84)(4,67,21,85)(5,68,22,86)(6,69,23,87)(7,70,24,88)(8,71,25,89)(9,72,26,90)(10,73,27,91)(11,74,28,92)(12,75,29,93)(13,76,30,94)(14,77,31,95)(15,78,32,96)(16,79,33,97)(17,80,34,98)(18,61,35,99)(19,62,36,100)(20,63,37,81)(41,149,140,119)(42,150,121,120)(43,151,122,101)(44,152,123,102)(45,153,124,103)(46,154,125,104)(47,155,126,105)(48,156,127,106)(49,157,128,107)(50,158,129,108)(51,159,130,109)(52,160,131,110)(53,141,132,111)(54,142,133,112)(55,143,134,113)(56,144,135,114)(57,145,136,115)(58,146,137,116)(59,147,138,117)(60,148,139,118), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,86,11,96)(2,95,12,85)(3,84,13,94)(4,93,14,83)(5,82,15,92)(6,91,16,81)(7,100,17,90)(8,89,18,99)(9,98,19,88)(10,87,20,97)(21,75,31,65)(22,64,32,74)(23,73,33,63)(24,62,34,72)(25,71,35,61)(26,80,36,70)(27,69,37,79)(28,78,38,68)(29,67,39,77)(30,76,40,66)(41,155,51,145)(42,144,52,154)(43,153,53,143)(44,142,54,152)(45,151,55,141)(46,160,56,150)(47,149,57,159)(48,158,58,148)(49,147,59,157)(50,156,60,146)(101,134,111,124)(102,123,112,133)(103,132,113,122)(104,121,114,131)(105,130,115,140)(106,139,116,129)(107,128,117,138)(108,137,118,127)(109,126,119,136)(110,135,120,125) );

G=PermutationGroup([[(1,42,28,131),(2,132,29,43),(3,44,30,133),(4,134,31,45),(5,46,32,135),(6,136,33,47),(7,48,34,137),(8,138,35,49),(9,50,36,139),(10,140,37,51),(11,52,38,121),(12,122,39,53),(13,54,40,123),(14,124,21,55),(15,56,22,125),(16,126,23,57),(17,58,24,127),(18,128,25,59),(19,60,26,129),(20,130,27,41),(61,107,89,147),(62,148,90,108),(63,109,91,149),(64,150,92,110),(65,111,93,151),(66,152,94,112),(67,113,95,153),(68,154,96,114),(69,115,97,155),(70,156,98,116),(71,117,99,157),(72,158,100,118),(73,119,81,159),(74,160,82,120),(75,101,83,141),(76,142,84,102),(77,103,85,143),(78,144,86,104),(79,105,87,145),(80,146,88,106)], [(1,64,38,82),(2,65,39,83),(3,66,40,84),(4,67,21,85),(5,68,22,86),(6,69,23,87),(7,70,24,88),(8,71,25,89),(9,72,26,90),(10,73,27,91),(11,74,28,92),(12,75,29,93),(13,76,30,94),(14,77,31,95),(15,78,32,96),(16,79,33,97),(17,80,34,98),(18,61,35,99),(19,62,36,100),(20,63,37,81),(41,149,140,119),(42,150,121,120),(43,151,122,101),(44,152,123,102),(45,153,124,103),(46,154,125,104),(47,155,126,105),(48,156,127,106),(49,157,128,107),(50,158,129,108),(51,159,130,109),(52,160,131,110),(53,141,132,111),(54,142,133,112),(55,143,134,113),(56,144,135,114),(57,145,136,115),(58,146,137,116),(59,147,138,117),(60,148,139,118)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,86,11,96),(2,95,12,85),(3,84,13,94),(4,93,14,83),(5,82,15,92),(6,91,16,81),(7,100,17,90),(8,89,18,99),(9,98,19,88),(10,87,20,97),(21,75,31,65),(22,64,32,74),(23,73,33,63),(24,62,34,72),(25,71,35,61),(26,80,36,70),(27,69,37,79),(28,78,38,68),(29,67,39,77),(30,76,40,66),(41,155,51,145),(42,144,52,154),(43,153,53,143),(44,142,54,152),(45,151,55,141),(46,160,56,150),(47,149,57,159),(48,158,58,148),(49,147,59,157),(50,156,60,146),(101,134,111,124),(102,123,112,133),(103,132,113,122),(104,121,114,131),(105,130,115,140),(106,139,116,129),(107,128,117,138),(108,137,118,127),(109,126,119,136),(110,135,120,125)]])

74 conjugacy classes

class 1 2A2B2C2D···2I4A···4N4O···4X5A5B10A···10F20A···20H20I···20AF
order12222···24···44···45510···1020···2020···20
size111110···102···210···10222···22···24···4

74 irreducible representations

dim111111111222224444
type+++++++++++++-+
imageC1C2C2C2C2C2C2C2C4D5D10D10D10C4×D52+ 1+42- 1+4Q8.10D10D48D10
kernelC42.126D10C42⋊D5C4×D20D5×C4⋊C4D208C4Q8×Dic5Q8×C20C2×Q82D5Q82D5C4×Q8C42C4⋊C4C2×Q8Q8C10C10C2C2
# reps13333111162662161144

Matrix representation of C42.126D10 in GL6(𝔽41)

4000000
0400000
0038353529
0073146
00352936
001463438
,
3200000
0320000
0023500
0011800
0000235
0000118
,
22130000
1900000
000066
0000340
00353500
007000
,
2290000
19190000
00203800
00382100
00002038
00003821

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,38,7,35,14,0,0,35,3,29,6,0,0,35,14,3,34,0,0,29,6,6,38],[32,0,0,0,0,0,0,32,0,0,0,0,0,0,23,1,0,0,0,0,5,18,0,0,0,0,0,0,23,1,0,0,0,0,5,18],[22,19,0,0,0,0,13,0,0,0,0,0,0,0,0,0,35,7,0,0,0,0,35,0,0,0,6,34,0,0,0,0,6,0,0,0],[22,19,0,0,0,0,9,19,0,0,0,0,0,0,20,38,0,0,0,0,38,21,0,0,0,0,0,0,20,38,0,0,0,0,38,21] >;

C42.126D10 in GAP, Magma, Sage, TeX

C_4^2._{126}D_{10}
% in TeX

G:=Group("C4^2.126D10");
// GroupNames label

G:=SmallGroup(320,1246);
// by ID

G=gap.SmallGroup(320,1246);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,219,268,675,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^10=d^2=a^2*b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,b*c=c*b,d*b*d^-1=a^2*b,d*c*d^-1=c^9>;
// generators/relations

׿
×
𝔽